Chapter 3 DERIVATIVES OF PRODUCTS AND QUOTIENTS page 1

1. Find \(f'(x) \) and simplify

 a) \(f(x) = (x^3 - 2x)(4x - 1) \)

 b) \(f(x) = \frac{6x^2 - x + 3}{x^3 - 5} \)

2. Find \(f'(x) \) and do not simplify

 a) \(f(x) = \left(\sqrt[3]{x} + 3\right)\left(\frac{4}{x} + 3x^2\right) \)

 b) \(f(x) = \frac{8 - \frac{3\sqrt{x^2}}{5}}{x - 2x} \)

3. Find \(f'(x) \) and the equation of the tangent line at \(x = 3 \)

 a) \(f(x) = (x + 2)(x^2 - 5) \)

 b. \(f(x) = \frac{3x - 1}{4x + 7} \)
Chapter 3

DERIVATIVES OF PRODUCTS AND QUOTIENTS (continued)

4. Given \(f(x) = \frac{x^2 + 25}{x^2} \)

a) Simplify \(f(x) \) first, and then find the derivative.

b) Without simplifying \(f(x) \), use the quotient rule to find its derivative.

5. For the function \(f(x) = \frac{x^2 + 1}{x^2 - 1} \)

a) Find \(f'(x) \) and simplify the numerator
b) Find the value(s) for which \(f'(x) = 0 \)

6. For the function \(f(x) = (x + 7)(5 - x^2) \)

a) Find \(f'(x) \) and simplify
b) Find the value(s) for which \(f'(x) = 0 \)

7. An employee can accomplish \(N(t) \) tasks after \(t \) hours of training where \(N(t) = \frac{100t + 200}{t + 32} \)

a) find \(N'(t) \), the \textbf{instantaneous rate} of work output
b) find \(N'(18) \) and interpret the results
c) find \(N'(68) \) and interpret the results
A RULE FOR DIFFERENTIATING POWERS OF FUNCTIONS

If \(f(x) \) is a composite function such as \(f(x) = (function \ f)^n \) where \(n \) is a constant, then \(f'(x) = n (function \ f)^{n-1} (derivative \ of \ f) \)

ie: If \(y = f(g(x)) \) then \(f'(x) = f'(g(x)) \cdot g'(x) \) if they exist.

example 1: \(y = (x^3 + 5)^2 \) then \(y' = 2(x^3 + 5)(3x^2) \)

question: Where did the factor of \((3x^2) \) come from?

answer: Look at \(y = (x^3 + 5)^2 = (x^3 + 5)(x^3 + 5) \) and use the Product Rule to take the derivative. The result is \(y' = (x^3 + 5)(3x^2) + (x^3 + 5)(3x^2) = 2(x^3 + 5)(3x^2) \)

example 2: \(y = (x^3 + 5)^{10} \) The derivative is \(y' = \ldots (x^3 + 5)^9 (\ldots) \)

Find the derivative of each

3. \(h(x) = (x^3 + 5)^{\frac{1}{3}} \)
4. \(h(x) = \frac{1}{(x^3 + 5)^{\frac{1}{3}}} \)
5. \(h(x) = (x^2 - 7x + 1)^5 \)
6. \(h(x) = \frac{2}{(x^3 - x)^4} \)
7. \(g(x) = \sqrt{5x - 2} \)
8. \(f(x) = \frac{3}{(4x^2 + 6x - 5)} \)
Chapter 3 CHAIN RULE: GENERAL POWER FORM page 4

COMBINING RULES:
1. find the derivative of each

 a. \(f(x) = x^3(x^4 + 3)^2 \)
 b. \(f(x) = \frac{5x^2}{(6x - 7)^3} \)
 c. \(g(x) = 2x^2 \sqrt{8 - x^3} \)

2. Find an equation of the tangent line to the graph of \(y = x \sqrt{1 + x^3} \) at \(x = 2 \)

APPLICATIONS:
1. A manufacturer’s total cost in producing \(x \) items is (in thousands of dollars)
 a) Find the rate of change of the total cost function
 b) Find \(C'(3) \) and interpret
 c) Find \(C'(5) \) and interpret

2. A small polluted lake was treated with a chemical to destroy bacteria. It is estimated that after \(t \) days of treatment, the number of bacteria in one CC should be \(N(t) \), where \(N(t) = 500(8 - t)^2 \)
 a) Find \(N'(t) \)
 b) Find \(N'(1) \) and \(N'(6) \) and interpret each.
3. It is estimated that t years from now, the population of a certain town will be
 \[p(t) = 20 - \frac{6}{t + 1} \]
 thousands
A study indicates that the average daily level of carbon monoxide in the air
will be
 \[c(p) = 0.5\sqrt{p^2 + p + 58} \] ppm when the population is p thousand

a. At what rate will the carbon monoxide level be changing with respect to
 population when the population is 18 thousand people?

b. At what rate will the carbon monoxide level be changing with respect to
 time 2 years from now?
MATH 105
LOCAL EXTREMA AND THE FIRST DERIVATIVE TEST

Finding local (or relative) extrema for a nonconstant function continuous on the interval (a, b)

1. Find the domain of the function
2. Find the Critical Values, c, of the function: values of x in the domain of the function that make $f'(c) = 0$ or $f'(c) = ND$

3. Use a sign analysis for f' and label the Critical Values.
 The critical values divide the f' x-number line into intervals.
 Test a value from each interval into f' to determine if f' is positive or negative throughout that interval.

 If the sign of f' changes
 from + to -, then f(c) is a local maximum
 from - to + , then f(c) is a local minimum
 no change at x=c means that there is not a local extremum at c

Use the First Derivative test to determine where f(x) is increasing, decreasing, and local extrema

1. $f(x) = x^2(x-1)^3$

2. $y = -x^3 - 8x^2 + 9x - 6$
First Derivative test (continued)

3. \(f(x) = (x + 4)^\frac{2}{3} \)

4. \(f(x) = \frac{x - 5}{x + 3} \)

A manufacturer of sofas finds that the total cost of producing \(x \) sofas per week is given by
\[
C(x) = 20 + 200x + \frac{x^3}{100}, \quad 0 < x < 25.
\]

a. Find the Average Cost function

b. Find the intervals where the Average Cost is decreasing and increasing and all local extrema
Example: Find the absolute extrema for \(f(x) = 2x^3 - 3x^2 - 12x + 24 \)

a. for \([-3,4]\]

b. for \([-2,3]\]

c. for \([-2,1]\]

Example: A company manufactures and sells \(x \) radios per week. The revenue received for selling \(x \) radios per week is modeled by

\[
R(x) = 10x - 0.001x^2 \quad \text{for} \quad 0 \leq x \leq 10,000.
\]

a. find the production level that will yield the absolute maximum revenue

b. Give the absolute maximum revenue

WHN page 275 ex 5